Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(8): 2335-2346, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38568477

ABSTRACT

We describe the first microfluidic device for in vitro testing of brachytherapy (BT), with applications in translational cancer research. Our PDMS-made BT-on-chip system allows highly precise manual insertion of clinical BT seeds, reliable dose calculation using standard clinically-used TG-43 formalism and easy culture of naturally hypoxic spheroids in less than 3 days, thereby increasing the translational potential of the device. As the BT-on-chip platform is designed to be versatile, we showcase three different gold-standard post-irradiation bioassays and recapitulate, for the first time on-chip, key clinical observations such as dose rate effect and hypoxia-induced radioresistance. Our results suggest that BT-on-chip can be used to safely and efficiently integrate BT and radiotherapy to translational research and drug development pipelines, without expensive equipment or complex workflows.


Subject(s)
Brachytherapy , Brachytherapy/methods , Radiotherapy Dosage , Biology
2.
Methods Mol Biol ; 2543: 13-25, 2022.
Article in English | MEDLINE | ID: mdl-36087255

ABSTRACT

Microfluidic technology facilitates the generation of 3D spheroids from cancer cells, a more suitable model for preclinical therapeutic studies. This system opens the possibility to test many drugs combination at a low cost. Here we describe the use of microfluidic devices for cytotoxicity evaluation on cancer spheroids for the discovery of drugs that could be used in combination with radiotherapy. Device fabrication, preparation, and seeding are also covered. Cell death arising following treatment is detected and characterized according to spheroid size, colony formation assays, and flow cytometry analysis of apoptotic marker annexin V.


Subject(s)
Lab-On-A-Chip Devices , Neoplasms , Cell Culture Techniques , Cell Death , Humans , Spheroids, Cellular
3.
Can J Surg ; 65(4): E407-E416, 2022.
Article in English | MEDLINE | ID: mdl-35790239

ABSTRACT

BACKGROUND: The benefits of using cadaveric humans in surgical training are well documented, and knowledge of the latest endovascular techniques is essential in the daily practice of vascular surgeons. Our study explores the feasibility of an affordable human cadaveric model with pulsatile and heated antegrade perfusion for reliable and reproducible endovascular or surgical simulation. METHODS: We undertook cannulation of 7 human cadavers embalmed in a saturated salt solution to create a left-to-right central perfusion with a heated solution, from the ascending thoracic aorta to the right atrium. To that end, we used surgically created carotidojugular and femorofemoral arteriovenous fistulas. Biomedical engineers designed a prototype pump for pulsatile circulation. We monitored invasive blood pressure and temperature. We used this model for training for endovascular thoracic aortic procedures and open vascular surgeries. RESULTS: The prototype pump achieved a pulsatile flow rate of 4.7 L/min. Effective cadaveric perfusion was achieved for several hours, not only with an arterioarterial pathway but also with arteriovenous circulation. The arterial pressures and in situ temperatures accurately restored vascular functions for life-like conditions. This new model made it possible to successfully perform thoracic endovascular aortic repair, subclavian artery stenting and simulation of abdominal open vascular trauma management. The saturated salt solution method and a specifically designed pump improved cost competitiveness. CONCLUSION: Endovascular simulation on human cadavers, optimized with the pulsatile and heated perfusion system, can be a dynamic adjunct for surgical training and familiarization with new devices. This reproducible teaching tool could be relevant in all surgery programs.


Subject(s)
Endovascular Procedures , Cadaver , Humans , Perfusion/methods , Pulsatile Flow , Stents
4.
Lab Chip ; 22(11): 2065-2079, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35477748

ABSTRACT

The clinical importance of radiotherapy in the treatment of cancer patients justifies the development and use of research tools at the fundamental, pre-clinical, and ultimately clinical levels, to investigate their toxicities and synergies with systemic agents on relevant biological samples. Although microfluidics has prompted a paradigm shift in drug discovery in the past two decades, it appears to have yet to translate to radiotherapy research. However, the materials, dimensions, design versatility and multiplexing capabilities of microfluidic devices make them well-suited to a variety of studies involving radiation physics, radiobiology and radiotherapy. This review will present the state-of-the-art applications of microfluidics in these fields and specifically highlight the perspectives offered by radiotherapy on-a-chip in the field of translational radiobiology and precision medicine. This body of knowledge can serve both the microfluidics and radiotherapy communities by identifying potential collaboration avenues to improve patient care.


Subject(s)
Microfluidics , Radiation Oncology , Drug Discovery/methods , Humans , Lab-On-A-Chip Devices , Precision Medicine
5.
Cancers (Basel) ; 13(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439199

ABSTRACT

Hypoxia is a key characteristic of the tumor microenvironment, too rarely considered during drug development due to the lack of a user-friendly method to culture naturally hypoxic 3D tumor models. In this study, we used soft lithography to engineer a microfluidic platform allowing the culture of up to 240 naturally hypoxic tumor spheroids within an 80 mm by 82.5 mm chip. These jumbo spheroids on a chip are the largest to date (>750 µm), and express gold-standard hypoxic protein CAIX at their core only, a feature absent from smaller spheroids of the same cell lines. Using histopathology, we investigated response to combined radiotherapy (RT) and hypoxic prodrug Tirapazamine (TPZ) on our jumbo spheroids produced using two sarcoma cell lines (STS117 and SK-LMS-1). Our results demonstrate that TPZ preferentially targets the hypoxic core (STS117: p = 0.0009; SK-LMS-1: p = 0.0038), but the spheroids' hypoxic core harbored as much DNA damage 24 h after irradiation as normoxic spheroid cells. These results validate our microfluidic device and jumbo spheroids as potent fundamental and pre-clinical tools for the study of hypoxia and its effects on treatment response.

6.
Radiother Oncol ; 157: 175-181, 2021 04.
Article in English | MEDLINE | ID: mdl-33516789

ABSTRACT

PURPOSE: Radioresistance, tumor microenvironment, and normal tissue toxicity from radiation limit the efficacy of radiotherapy in treating cancers. These challenges can be tackled by the discovery of new radiosensitizing and radioprotecting agents aimed at increasing the therapeutic efficacy of radiotherapy. The goal of this work was to develop a miniaturized microfluidic platform for the discovery of drugs that could be used in combination with radiotherapy. The microfluidic system will allow the toxicity testing of cancer spheroids to different combinations of radiotherapy and molecular agents. MATERIALS AND METHODS: An orthovoltage-based technique was used to expose the devices to multiple X-ray radiation doses simultaneously. Radiation dose-dependent DNA double-strand breaks in soft tissue sarcoma (STS) spheroids were quantified using comet assays. Analysis of proliferative death using clonogenic assays was also performed, and synergy between treatments with Talazoparib, Pazopanib, AZD7762, and radiotherapy was quantified using dedicated statistical tests. RESULTS: The developed microfluidic system with simple magnetic valves was capable of growing 336 homogeneous STS spheroids. The irradiation of the microfluidic system with an orthovoltage-based technique enabled the screening of sixteen drug-radiotherapy combinations with minimal reagent consumption. Using this framework, we predicted a therapeutic synergy between a novel anticancer drug Talazoparib and radiotherapy for STS. No synergy was found between RT and either Pazopanib or AZD7762, as the combinations were found to be additive. CONCLUSION: This methodology lays the basis for the systemic search for molecular agent/radiotherapy synergies among preexisting pharmaceutical compounds libraries, in the hope to identify failed drug candidates in monotherapy that, in the presence of radiotherapy, would make it through clinical trials.


Subject(s)
Antineoplastic Agents , Sarcoma , Soft Tissue Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Sarcoma/drug therapy , Sarcoma/radiotherapy , Spheroids, Cellular , Tumor Microenvironment , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...